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In this work, the problem for the quality of empirically determined harmonic force constants in ground electronic
state benzene has been carefully reexamined, for the case when strongly anharmonic vibrations are involved
and in particular for the 4y (v1 andv,) vibrational system. A numerical procedure, based on a local bond
Hamiltonian representation for the—&l stretch system and a symmetrized coordinate treatment for the
11(C—C) mode, has been described and applied to the determination of the hafmgre ,, andF; ,, and

some important (diagonal) anharmonic force constants, instead of the tradii@raadalysis. As a reference

data for the determination of the required force constants, the set of experimentally obseediv,
fundamentals for fouDg, benzene speciessks, CsDs, *CsHe, and**CsDs have been employed. The harmonic

force constants as well as harmonic frequencies obtained in this work have substantial deviations from previous
determinations. Using the presently determined force constant values, a very good fit of the calculated to the
experimentally observed frequencies has been achieved.

I. Introduction Fix Fikj ... are identical for all isotopic species, which sustain

1 1
The ground electronic state potential surface of benzene hagthe Symmetry of benzene (e.g&HG, CoDe, “CoHe, and™*CeH).
The harmonic force constarfeg are the most important ones

long been established as a benchmark for empirical potential. . - =
surface method5:® A great body of spectroscopic data is in expansion 1, because (i) they are the largest and determining

available for benzene as well as for the isotopically labeled ones anq (i thelr_ values stay ur_lchanged, Wh‘?f.‘ rectilinear
specie€18 which has allowed us to derive a highly accurate symmetrized coordlngtgs are usedllnst.ead of curwlmegr’énes.
empirical harmonic force fiel&:® Although the empirically In general, th.e emp_mcal determination of harmonic force
generated complete harmonic force field by Goodman and co- Cant?ntSF"k Is carried out for each symmetry block of
worker§8 is capable of reproducing very well practically all vibrations separately, using as a reference data the relevant

spectroscopic observables for benzegddCstill some discrep- ihs?)rtr(])mizlcs r:gigg).mg d?ng:r'\]/ls? é;e%iegf;z;g sv?lio%nore
ancies remain, concerning in particular the-Ig@ stretch PIC Sp i Y

: nalysist For example, for théy4 block in benzene, consisting
Iﬁgdgg_el n;?rlzt;r]lgss?em; fr;%léir;ms j 06f th7e Zan;ﬁ dsygmgge ry asgf the symmetrized vibratiorty; (a C—-C stretch) ands, (a C—H
symmetry) and modeé Ho. 12 and '13 ,Bﬂ; S);mmetry) in stretch), the three relev_ant ha_lrmonic force consteats Fg,z,
Wilson’s numbering, cf. Table 5 from ref 8]. Furthermore, still ?rnd Fl’nz ?an bem;iet?rrrng\;d, Ilf kn?]wn ;re rt:je hfarrrré:c;'rj;caNM
larger discrepancies occur in the vibrational frequencies of the "cduenciesus andwz 1o 6 PIUS ONE Ok, andwz 1o &

isotopically labeleden benzenes (s, 2*CeHs, and*CeDe). 'rl]'he m(.)stf serious problzm with trtns approacthnls tbhat the
Ab initio methods have been widely applied to the determi- 2 monic TEqUENCIas, andw, are Not experimentatly observ=

nation of the harmonic and higher order force constants in able, but the corresponding f_und_amental frquermiemdvz
benzend%-22 At the present state of the art, these methods are &€ Therefore, for the determination of harmonic force constants

not suitable for determination of the harmonic force constants Fik, fundamental frequencies have usually been employed,

with spectroscopic accuracy; however, it was argued by Maslen instead of harmonic NM frequencies, assuming; and o
et al?2 that ab initio methods should be much more efficient
for anharmonic force constants.

The benzene potential field can be described as a serie
expansion in a variety of coordinate types. Using symmetrized
curvilinear (Whiffen’s) coordinate§,,* it takes the form

1 1
V= EZ FilSSct 8 ; Fi,i,kssﬁ T @

Here, Fix are harmonic force constants,y; are anharmonic
cubic force constants, etc. The advantage of working in terms

of symmetrized curvilinear coordinates is that the force constants

* To whom correspondence should be addressed. E-mail: RASHEV@
ISSP.BAS.BG. Fax: 00 359 2 975 36 32.

10.1021/jp0101880 CCC: $20.00

S

are reasonably close. There are however certain strongly
anharmonic vibrations (e.g., the-® stretches) for which the
anharmonic correctiond; = w; — v; are quite large. In such
cases, thé-G analysis could yield incorrect values fBry, if
determined using; instead ofw;. In second-order perturbation
theory (disregarding resonance effects), the anharmonic cor-
rectionsA; are given by the expression

+x (L+d)+ ! E d + (2)
V.= ; . . -_ X ..
i i XII i 2 L ik-k gu

whereX;, Xk, andgi are anharmonic constants addis the
degeneracy. In principle, the anharmonic constants can be
expressed through the cubic and quartic force constalis
andFiy;, as well as terms containing G-matrix derivatives.

© 2001 American Chemical Society

Published on Web 06/13/2001



6500 J. Phys. Chem. A, Vol. 105, No. 26, 2001 Rashev

Goodman et &f.have taken into account only the diagonal TABLE 1: Experimentally Observed Fundamental _
anharmonic constar; (derived from higher €H stretch Errr?*qll)JgTﬂ%SEArrll% g;&”i ;’2 ng)éfeDr%ningrgtegr%/orBeErr]T?pe)irr]i?:ZI(In
overtone absorption spectfpin calculating 'Fhe anharmonic Determination of the Eorce Constants
correctionsA; to C—H stretch fundamentals in benzene; thus,

they tookA, = 2x»» = 117 cnt?, and hencev, = v, + A, = CeHs CeDs CeHs 3CeDs
3191 cntl. However, there are indications, thas might be V1 993.071 945.583 957.4 916.6
obtained significantly larger when nondiagonal anharmonic 2 3073.942 2303.44 3049.8 2283.9

constants are also taken into account. Thus, Masler?éhale
obtained from ab initio calculations, = 138 cn1?, which leads
to a very different value fow,.

On the other hand, it is a generally accepted idea, that the||. LM Description of the C —H Stretch Vibrational
system of G-H stretch vibrations in benzene is much more System in Benzene
conveniently and reliably described as a set of six identical,
one-dimensional, strongly anharmonic, very weakly coupled to
each other, local bond Morse oscillator Hamiltonians (in local
coordinates, i = 1, ..., 6), instead of symmetrize8y( S5, S,
and So) and NM oscillator$42° In this local mode (LM)
description, the basis €H stretch vibrational functions are CH_ a2
obtained as appropriately symmetrized linear combinations of Ho = Z - Egss_z +D(1-e™)
products of six Morse oscillator eigenfunctions, belonging to = 05
one of the following symmetry typesfug, Azg, Biu, Bau, Ezg, CH
or Eyy. The C—H stretch basis functionsg of g given symrrg1etry H"=fdsS + oS+ .t 5s) +hidss+ 5+ ..+
type will be coupled to the block of symmetrized nor-8- ) T As8 + 55+ 555%) (3)
stretch vibrations of the same symmetry type, to yield the
experimentally observable vibrational frequencies. In particular, whereHS™ is the zeroth order Hamiltonian, consisting of six
the C-H stretch basis functions ofyg symmetry will be uncoupled Morse oscillatorgss = 1/my + 1/mc (my and mc
strongly coupled (through nondiagonal harmonic interaction are the mass of H and C atoms, respectiveby),is the
terms) to the eigenstates of the totally symmetrieCstretch anharmonic parameteBs is the dissociation energy-,l‘fH is
oscillatorS;. The investigation of this coupling between a local the interaction Hamiltonian, arfg,, f1 3, andf; 4 are small force
mode and a symmetrized mode cannot be done analytically (asconstants, describing the coupling between different®ond
is the familiar FG analysis in the case of only symmetrized oscillators. The Morse potential is expanded in powers: of
modes), but it must be done by numerical diagonalization of
an appropriately selected Hamiltonian matrix. In general, the D(1 — e )%= Ds[(ass)z - (ass)s + l(ass)4 — 1=
described approach can be classified as combinedHLBIM 12
(symmetrized mode) treatmet§t:3! Such an approach is par- l-f S+ l'f S+ lf s+.. 4
ticularly suitable for exploration of higher excited-&f stretch 2° 6°° 245
overtone states, their absorption spectra, and dynaihies.

benzene vibrations must also be taken into account. In section
V we conclude.

The Hamiltonian of the €H stretch vibrational system in
benzene is written in the form

H = Hg" + HE™,
6 2 2

where fsg fsss €tc. are diagonal harmonic, cubic, etc. force

Itis our aim to demonstrate that this approach is very useful constants. The energy levels of a Morse oscillator are given by
for the lower excited vibrational states as well. In the present iy formula

work, we are studying thég (v1 andv,) vibrational system in

benzene. This work is organized as follows. In section Il is E — L L2 5
outlined the theoretical LM description of the—El stretch n wCH(n 2) XCH(n 2) )
Hamiltonian in benzene and its symmetry adapted eigenfunc- . ] . ]
tions, in particular local and nonlocal basis states Aqf wherewcy is the harmonic frequency angy is the anharmonic
symmetry type. The transformation of the-& stretch Hamil- constant.

tonian from LM () to SM (S) coordinates is considered, and

the correspondence of harmonic and anharmonic force constants wqy, = %./fssgss Xen = %wCH(asks)z, ks = y/hy/0sdfes
in both types of representations is discussed. In section IIl the G

harmonic interaction Hamiltonian, coupliryg C—H stretch )

basis states to eigenstates of ienode, is considered. Next, o 3f >

a search procedure is outlined, for selection of an active space  § —_CH ¢ _— _ =S Fen_ 3 2 7
. . . . . ss 2! 'sss 3 DcHXeH ( )

and derivation of the relevant Hamiltonian matrix, whose kS Ks Wch K

diagonalization is subsequently carried out using a Lanczos

tridiagonalization routine. In section IV are presented and The C-H stretch HamiltoniatH®" can also be presented in
discussed the results from the numerical calculations, yielding terms of symmetrized coordinates instead of the local bond
the Ay (v1 and vy) fundamentals of the fouDg, benzene stretchess. We shall be using the complex symmetrized
isotopomers gHg, CsDs, 13CsHs, and 13CsDe. By adjustment coordinatesy®® instead of Whiffen's coordinateS,* because

of the calculated; andv, fundamentals to the experimentally in terms ofq; the potential field expansion to arbitrary powers
measured frequencies (summarized in Table 1), values for theof the coordinates contains only totally symmetric terms and
most important harmonic and anharmonic force constants,the minimum number of independent force constants (for the
relevant to the €&H stretch vibrational system as well as to C—H stretch coordinates, the relations @pe= S, qi3 = iSys,

the Si(Ayg) vibration in benzene, have been determined. It is ¢7ap= 1/ \/§(S7a:|: iS7), andzoa b= llx/i(SZOa:I: iISom). Only
shown, that for the correct description of thefundamentals those terms in the expansion of the-B stretch potential field
(at~3000 cn1l), resonant anharmonic interactions with other to fourth order are given, which contain the, coordinateg,:
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Veod at a1l )ige foss N 1W6(120 + |23 + ... + |20 at energyE, = 5(wch — 3Xcr/2)
T (5lsT 2T s T 5l TG NG and three nonlocal states at enefy1 = 5wch — 13XcH/2:
- foe fo fie 1@ = 146010113 + 13113 + ... + |1@10), ¢ =
0% qzm? - qqusz—f + q2q7aq7b7 + q24m— V6(1011E + 11311Q + ... + [1Q1E), and @@ =
6 2v6 6 1V/3(110/110G + |103/118 + |13]119), etc.
2, 2 fSﬁs 102 lssss Both the local and nonloc# eigenstates of the-€H stretch
Go(Ora020a” + Gt7elocs ) 12 % Az0a0200 12 system, described above, are coupled strongly (harmonically)
) ssss focss to the eigenstates of tifgay C—C stretch vibratiors, in benzene.
a, q7aq7bE — Op013(07:00 T q7bq206)? - This vibration is described by a Morse oscillator Hamiltonian
f f in terms of the symmetry coordinag:
SSss 2 SSss

q2(Q7a3 + Q7b3)% + Q2ZQ13 24 +... (8) 2 2

cc_h d a2
_EgCCa_2+ Dc(1—e ™)
Hence, the relevant symmetrized force constants Bge:= fss S
+ 2f1 0+ 2f 5+ f1a, Fo22= fssdv/B, Fo7.7= F22020= fesd /6, De(1 — e ®%)?= l|:1 S+ 1|:l LS+ ... (10)
= foool /6 = fusl/B | : 21 T gha,

F2,2,2,2 fssséV 6, F2,13,7'20 fssséV 6, etc. From this expan

sion in symmetrized coordinates, it is obvious that, although

the small quadratic nondiagonal coupling terms have disap-

peared, nondiagonal cubic, quartic, etc. force constants arise, s 1 12

which are as large as the relevant diagonal anharmonic constants Occ=1m; E,= wl(m + 5) - X1(m + 5) (11)

F222 F222a2 -... These latter constants are however much smaller

than the diagonal force constants for a local bond oscillator, energy of overtone levels in tt# vibration, whose harmonic

fsss fssss etc. (This observation holds for the other symmetrized frequencyw$ and anharmonic constantare expressed through

C—H stretchestis, Qrap and Qoeap as well). Hence, the  the force constants, ; andFy 1 1 (using formulas analogous to

symmetrized G-H stretch modes are more weakly diagonally g 5ng 7).S. is however much more weakly anharmonig/g®

anharmonic but strongly anharmonically coupled to each other, 0.001) than the local bond-€H oscillator Ker/wer ~ 0.015;.

whereas the local bond oscillators are more strongly diagonally  The pasis states for the description of the considered

anharmonic, however, practically uncoupled to each other. This iy ational systemAy (v andw,), consisting of theAyy C—H

IS yvhy thg GH §tretch vibrations in penzene are moreé - oieich eigenstateazi(”) and the eigenstategn(] of the §
satisfactorily described as local bond oscillators than as sym- - ) ®
Hamiltonian (eq 10), are obtained as produajs= ¢;"’'|m=

metrized (and normal) modes. ) . o
The eigenfunctions ofHSH are products of six Morse |%i ‘M The energy of such a basis state is given by

oscillator eigenfunctions/n;[J |‘|i6:1|ni|11 with their energy 6 1 1\2 1
being given by E,= wCH(ni + 5) — XCH(ni + E) ] + wi(m+ E) —

6 1 1\? 1\2
=" Z[“’( ! 5) - XC( " 5) ] ©) X1(”‘+ 5) 12)

For example|2[|10 is an eigenstate which has two excitation Il Interaction Hamiltonian and Hamiltonian Matrix
quanta in bond oscillator number 1 and one quantum in oscillator Manipulation

number 3, whereas oscillators 2, 4, 5, and 6 have zero excitation
guanta and have (for compactness) been excluded from th
notation. A statgnljlis of purely local type, because only one

where

The eigenstateﬁoi(”),mDare coupled to each other through a
equadratic interaction Hamiltonian:

bond oscillator is excited, whereas a state with more than one 2

oscillator excited is of nonlocal character, the stronger, the more 412 = _— thl 5 +F,.SS =

evenly are the excitations distributed among the six bond "0, 0S, ’

oscillators. A state is said to belong to the= 32 , n; overtone 1 9 6 5 1 6
system. To obtain the symmetry adapted eigenstates;0f —RG —— Y —+F, S— ;ﬁ( (13)
appropriate linear combinations of the product states 3;_, Ve IS & 95 - J6FE

Cx |'|i6=1|nim+k must be taked> 27 which can have one of the

following symmetry types:Aig, Azg, Biy, Bay, Ezg, OF Exu. It is whereF, is a nondiagonal harmonic force constant &

not an easy task to generate the symmetrized eigenstates of a= — 1/mcis a kinetic coupling constant. In calculating the matrix

symmetry types for arbitrary overtone manifolusSo far, we elementsijjoﬂ), r|H1v2|<pi("’,mD the integrals irs are calculated

have been able to design an algorithm generating the states ofuising Morse oscillator formalism:

Ayg symmetry only, which are required for investigation of the

Aqg (v1 andyy) vibrational system in benzene. Some of the lower —on—92Y _
. . 3 _ /nt1 [R—2n—-2)—1 _

excited Ag eigenstates of local and nonlocal character are as kaLl‘ P ’nﬂ— 5 —

follows. Overtone manifolah = O consists of ondyg stateg(® S RR-n—-1)

= y° ,|0L] at energyEy = 3(wch — Xcr/2). Overtone manifold EH 9 ‘n+1ﬂ (14)

n = 1 contains six states, one of them isfaf, symmetry,p®) g 08¢

= 14/6(10 + |13 + ... + |1[), at energyE; = 4(wch — R 5

7xch)/2. Overtone manifolch = 2 contains 21 states, four of | +1|s|nf]= —kH—i-l‘ — ‘nﬂz s n+10

them are ofA;g symmetry: one purely local state® = R+2n-2 95
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wheres, = ks is a dimensionless coordinate aRd= wcw/ TABLE 2: Calculated A;q Fundamental Frequenciesv; and

Xcr, Whereas the integrals i, are the simpler harmonic vz (in cm™) for Den Symmetry Benzenes

oscillator expressions (obtained from (14)Rat— ). CsHs CsDs 13CeHs 13CeDg
Be_side.sHLZéchere is als_o a second (Weak) intera_ction " 993.087 945 476 95755 915.48

Hamiltonian H;™ (eq 3), which is responsible for couplings Vs 3050.346 2304.79 3039.41 2286.69

only among the eigenstates of the-B stretch system. The
magnitude of these coupling terms is determined by the small
force constant$; o, f1 3 andfy 4

Thus, the C-H stretch system is characterized by force tally,2* we have fixed the input anharmonic constankat =
constantsss fsss f1.2, f1.3 andfy 4, the S, vibration is characterized ., = 58.6 (in accord with Goodman et . From this value
by F11andF1,1,3 and the coupling between both is characterized g, xc1 and the input value for the harmonic force constiant
by F1 2. For a calculation on the eigenstates of the resuliid e value offssswas determined, using formulas 6 and 7.
(v1 andw,) vibrational system to be performed, values must be The progression in the, mode, corresponding to puresy
ascribed to each of these eight force constant parameters. Th(?/ibrational overtone statelsn) is,very clearly discernible in

IiO”r?Wvlvr;lg G-Taltrlx e{/enpents a:giﬁls? r?ﬂuuiredtfor trt:]e rcalcr?l‘;’; the calculated eigenvalue spectrum, with anharmonic constant
on, Whose values vary according to the isotopomer cons "X, &~ x1. This anharmonic constant is however very well-

ered: gss = 1/my + 1ime, gec = Lime, andgs 2 = — Lime. known from experimentally observed long progressions in the
Having defined the basis states aljd coupling matrix element_s,v1 mode in benzene, ag = 0.65% Thus, analogously to the
a search procedure ha_s _been d(_eS|gned for_ selectmg_ an activgoye the value foff1 1.1 could be determined fromy = x, =
space (AS) from the infinite man_lfold of a.vallable.ba5|s_states 0.65 and the inpufs . value. In this way, the number of
and setting up of the Hamiltonian matrix. Starting with an jnqependently variable input force constant parameters could
appropriately chosen initial basis statd”,m) the algorithm  pe reduced by twofsssand Fi 1 1
procgeds to select all basis states coupled to This staltg through 11 v1 fundamentals (at aiobut 1000 c are sufficiently
mgt{rlx elements of the interaction Hamiltonia'( = H2 + low in energy and therefore not likely to be perturbed by
H;™); next, each of these initially selected states is explored, resonances with other vibrational levels, whereas in the case of
and more basis states are selected, which are coupled to it b\the 1, fundamentals (at-3000 cnt?), Fermi resonance interac-
H'" this procedure is carried on until a sufficiently large tions with combinations or overtones of vibrations, external to
and representative AS of dimensionalfyhas been selected. the consideredy (v, andvy) system, might incur a considerable
Simultaneously, the Hamiltonian matriki,x is obtained,  shift in their original position. Therefore, it was our first aim in
which consists of the basis state enerdigs(eq 12) as dia-  the calculations to reproduce correctly the experimentally
gonal elements and the relevant coupling matrix elements measured fundamental frequencigsor all four isotopomers
@ riH" o™ mias nondiagonal elements. The dimensional- (summarized in Table 1) by adjusting the values for the
ity N of the selected AS can be varied, by varying the values of remaining freely variable six force constants; f1 2, f13, f1.4,
several parameters of the search, as described previddly. Fi1, andFy . For this reason, the effect of small variations in
(A typical value sufficient for obtaining convergence in our the input values of each one of the parametgys: o, f13 f1.4,
calculations was\ ~ 300.) To obtain the eigenvalues of the Fi,1, andF;0on the four pairs of calculated{ andv,) values
studied vibrational system, the selected Hamiltonian matrix was had to be examined. As a rule, each parameter was found to
diagonalized numerically, using a Lanczos tridiagonalization have a specific effect on each one of the eighandy values,
procedureé?33 These eigenvalues can then be compared to different from that of the other parameters; furthermore ithe
experimentally observable fundamental frequencies and overtoneandv; frequencies for the pair of speciesH and'3CsH¢ were

aFermi resonance interactions of the ate with 19 and 3 are
not taken into account.

and combination level energies. affected in an almost identical manner, different from that for
the other pair €Ds and *3CsDe. For example, an increase of
IV. Results and Discussion F12by 0.01 produced an increaseiafby 0.14 and a decrease

of v, by 0.46, for GHe and3C¢Hs, and an increase of; by

The set of experimentally measuredandv, fundamentals 0.28 and a decrease of by 0.67, for GDs and 13D, etc.

i 1
1;c3)(r: ‘[i)” J?é’lrevtaﬁ'; Eehnz\;enﬁ s%ec:ﬁsleﬂe, dC6D6’ ; 3fC‘;Hr‘?] ar;d 1a ip Variations in the three small force constafis, f1 3 andf,
66, _which have been employed as a reference dala in ., vever, did not have independent significance; they could be
the calculations, are summarized in Table 1. A correspondence

can easily be established between the eigenstates obtained as\gmed with respect to each other, without changing the resultant

; o . . w1 and v, values, as long as the magnitude of the linear
result of the diagonalization and the basis states, described N .
above. In the first place, it was found that the eneEjyof combination 2%, + f1,g) + f1,4 was preserved. In this way, the

eigenstates, corresponding to purely locatCstretch states number of independently variable parameters could be reduced

. . by two more. By suitable adjustment of the parametgr& 1,
[Nkl com_JId be fairly well described by the energy, calculated Frs and 2{1o + f12 + f.4 it has been possible to achieve an
according to the formula

almost perfect fit of the calculated to the experimentally
measuredr; fundamentals for all fouDgn benzene species

[ — T ! u 2
BN = (@en = Xen)n — Xeun (15) CeHs, CoDs, 13CeHs, 13CsDs. The set of calculateat; and v,
values are displayed in Table 2. This fit was obtained with
for suitable values of the parametets,,, and X, It is following values of the force constant parameters (in mdyn and

noteworthy that the derived value af.,, was very different A): fss= 5.580,F11 = 7.645,F;, = 0.030,fsss= —30.070,
from the input harmonic frequenaycy (eqs 5 and 6; to be  F111=—16.758f; ,= 0.012,f; 3= 0.004,f; 4= —0.002, [2{1 2

discussed later) but the anharmonic constentwas practi- + f12) + f1,4 = 0.030]. We note that this set of force constant
cally identical to the input anharmonic constant, ix,, ~ values is unique, i.e., neither of them can be varied substantially
Xch. Because it is expected that the same anharmonic constantvithout deteriorating the obtained best fit to the four
value x¢, should hold for the €H stretch overtones oy, frequencies. The discussion of the obtained force constant values

symmetry (IR active) which have been measured experimen-will be deferred until a little later.
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TABLE 3: Calculated A,y Fundamental Frequenciesy; and
v, (in cm™1) for Dg, Symmetry Benzenes, Taking into
Account Fermi Resonance Interactions of ther,
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character) has higher frequen@y, than the frequencyi, of
the S;o (C—C stretching) vibration. Upon normalization, t6g

vibration is transformed into the NND;¢ (of prevailing C-H
wagging character), whose frequeneys is higher thanwig
(NM Qqs, predominantly G-C stretching). Therefore, it would
be more suitable to interchange Whiffen’s notation of the

Fundamental and Corresponding to the Best Fit Values for
the Force Constant Parameters (in mdyn and A): fss =
5.580,F1V1 = 7.645,F112 = 0.030,f555: _30.070,F1V1’1 =
—16.758,1;1’2 - 0.012,f1|3 - 0.004,f1‘4 = _0002, [2(1’2 + f1'3)

+ f14=0.030] symmetrized coordinateSig and S;g. Now, the first overtone
CeHe CeDs 13CeHs 13CeDs 19 of the NM Q9 (2w19 = 3000 cn1?) is seen to be quite
" 993.078 945.47 957.55 915.47 close tov,. The kinetic term coupling the state$ and 19,
V2 3073.96 2305.13 3052.08 2286.91 attains the form
From Table 2, it is seen that, although all foyfundamentals 2 2 2
. ) ) _ 41 1 2 d ad
are satisfactorily reproduced, the values are quite far from Tong10=— —|—=— T = | (B1919°"S +
- i iti - i ’ S mc ’ Q16> Q4
their experimentally measured positions, in particular for the 19 1%

two H-isotopomers §Hg and**C¢He. Hence, it is expected that
thew, fundamentals for the H isotopomers are affected by strong Analysis of the relative positions of thé and 19 states and
Fermi resonance with overtone states of other benzene vibra-the magnitude of the matrix eleme|T,/19,1419Clin all four
tions, outside theAyy (v1 and v;) system. Obviously, these isotopic species shows that, in botgHg and*3CsHe, the 1%
vibrations will also have to be taken into account in order to state is located energetically very close belowagd strongly
obtain realistic results for the four, fundamentals. coupled to it as~1/my, whereas in gDg and 13C¢Dg, it was

In this connection, we note that, in terms of curvilinear located far above2and coupled less strongly, asl/mp (mp
(symmetrized) coordinates, cubic kinetic interactions (first is mass of the deuterium atom). Hence, the statésl®xpected
derivatives of G-matrix elements) are expected to prevail over to shift the v, fundamental in @Hs and 3CgHs to higher
cubic potential terms. On the other hand, G-matrix derivatives frequencies and practically leave unchanged th®sCand
can be calculated exactly, whereas anharmonic force constants$3CeDg isotopomers, which is the required behavior (cf. the data
are practically unknown. Therefore, in the following estimations, for v, in Tables 1 and 2). The (kinetic) coupling of thes3ate
only kinetic interaction terms have been taken into account, (at energy @3) to v, was also taken into account by means of
completely disregarding potential couplings. Calculations on a procedure, analogous to the above-described; this case is even
G-matrix derivatives in benzene (which have been described simpler becaus&; is the only vibration ofAy; symmetry in

in considerable detail previousfy show that the € H stretch
fundamental, is coupled most strongly kinetically (by terms
~1/my) to the overtone states?k(at energy 2j;) of the
symmetrized vibration&s, S, S5, and S;g (of C—H in-plane
wagging type). (The frequenay, of a symmetrized vibration

benzene.

Calculations were performed on all four benzene isotopomers
with the states Band 19 and their coupling matrix elements
to vy, included in the Hamiltonian matrix. The results from the
calculation of the entire set of fundamentalsand v, for the

%, can be calculated by means of f-la 6, using the values of four Den benzene species¢Bs, CeDs, *CeHs, 1°CsDs are

Gkt and Fi.) Of them. only §Ax;) and Sig(Ei,) have
frequencies 3 = 1347 cnt! and w3z = 1388 cn1') whose
first overtones are reasonably closevto Considering first the
Sig case, the leading cubic kinetic interaction term, couplihg 2
(v2) to 1& (2wiy), is obtained as

Tong18= —

(1 1o (8t | &
% (”“mc)sz (aslafasmf)

wheres, is the equilibrium C-H bond length. Howevel$s is
coupled strongly (through harmonic kinetic and potential terms)
to two otherEy, modes: theSyg vibration @5, = 1244 cnt?)
and S (w5, ~ 3000 cmY), the latter one belonging to the
C—H stretch syster.In fact, S;g and Sy are coupled more
strongly to each other and less strongly S@, because the
frequencieswiy and w3, are rather close to each other but
much smaller tharw3, To take into account the coupling
betweers g andS, g, which leads to substantial frequency shifts,
partial normalization of the vibration§;g and S has been
carried out, using convention&G analysis (and the relevant
values 0fGig1d andfig19 = 0.2098). In this way, the NM
frequencieswi;g = 1052 cnt! and w9 = 1500 cnt?! (for
benzene gHg) were obtained, as well as the relevant (curvi-
linear) NM coordinatesQis = aig 16518 + a18.15510 and Q19 =
1018518 T 19150 It is seen that these partially normalized

displayed in Table 3. From a comparison of the values of Tables
3 and 1, itis seen that the agreement between calculatzod

v, values with experimentally measured fundamentals for all
four Den benzene isotopomers is particularly good, in fact much
better than previously achievédThe fit is obtained at the
following values of the harmonic and anharmonic force
constants (in mdyn and A)fss= 5.580,F11 = 7.645,F;, =
0.030,f353= _30-0701':1,1,1 = —16.758,f1'2 = 0-01211:1,3 =
0-004,f1,4 = _0.002,F2'2 = fss“r‘ 2(f1'2 + f1'3) + f1,4 = 5.610.

It is noteworthy, that the determined harmonic force constant
values show considerable deviations from the previous highest
precision empirical determinatiofsndeed, the diagonal force
constantsfss Fi13, and F,, determined in this work are
substantially larger than the best estimates, obtained &g
analysis {ss = 5.547,F11 = 7.616, andr,, = 5.554; ref 8).
Most interesting is, however, the behavior of the nondiagonal
force constantK, ;= 0.157; ref 8), which is reduced to a very
small valueF; , = 0.030, according to the present determination.
It is noteworthy that this small value fd¥;, is in line with
Whiffen’s constraint of all G-H stretching and other-vibration
potential interactions to zefotHence, the interaction of thisg
C—H stretching vibrational system with th&(C—C) mode
seems to be almost entirely kinetic, through @&g, term (eq

13). The values of diagonal anharmonic cubic force constants
fsss= —30.070 andF1 11 = —16.758 obtained here are about
10% smaller than the ab initio determined values by Maslen et

frequencies are reasonably close to the experimentally measure@l 22 of —34.289 and-18.289, respectively.

NM frequencie$:1%1'However, an inconsistency in the choice
of the S;g and Sy symmetrized coordinates by Whiffeseems
to have occurred. Indeed, tt8s vibration (of C-H wagging

From the determined harmonic force constant values, har-
monic frequencies can readily be calculated for all four
isotopomers: the local bond Morse oscillator frequetegy is
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TABLE 4: Calculated Harmonic Frequencies ecn, @1, and
w, (See Text) forDg, Symmetry Benzenes (in cm?)

CeHe CeDs 13CeHs 13CsDs
w1 994.23 947.22 958.87 917.02
w2 3213.19 2386.72 3201.73 2368.29
WcH 3191.76 2343.46 3181.21 2330.43

TABLE 5: Energy E, of Eigenstates, Corresponding to
Purely Local C—H Stretch States|nlj(of Ajg Symmetry
Type) vsn, Obtained from Diagonalization of the
Hamiltonian Matrix and Energy E", vsn, Calculated Using
the Approximate Formula 15, at the Following Values of the
Parameters: w¢, = 3137.5 andx., = 58.5 €, E;,, wcy and
Xcp in cm™1)

n E, =
1 3050.0 3020.5
2 5920.4 5924.0
3 8708.0 8710.5
4 11378.7 11380.0
5 13931.3 139325
6 16367.8 16368.0
7 18686.8 18686.5
8 20889.6 20888.0
9 22975.2 229725

obtained using théss and gss values and f-la 6 and the NM
frequenciesv; andw, are obtained by means &G analysis,
using the quantitieB 1, F2,2, F1,2, G113, G2 2andG; 2. The values
obtained for the harmonic frequencies of all four molecules are
displayed in Table 4.

From Table 4, it is seen that the values determined in this
work considerably exceed those derived by Goodman &t al.
This is easily understood, because Goodman &takd only

Rashev

cies. The method of determination is not based on the traditional
(analytical) FG analysis in terms of symmetrized vibrational
coordinatess¢! (which is unreliable when strongly anharmonic
modes are involved) but on a LM Hamiltonian and symmetrized
eigenfunction representation (in terms of local bond coordinates
s«) of the C—H vibrational subsystem in benzene. This approach
is most suitable for treatment of the strong diagonal anharmo-
nizm of the C-H stretches, but requires numerical procedures
for its implementation. In the present work, thAg, (v1 andvy)
vibrational system in benzene has been the object of investiga-
tion. The harmonic and some anharmonic force constants,
associated with this system, have been determined from a fit of
the calculated to the experimentally measured fundamentals
andv; of four Dg, benzene isotopomers: gs, CsDe, °CeHs,
and13CsDs. Some additional experimentally obtained data on
the anharmonic characteristics of theandv, modes have also
been taken into account. In particular, a good fit for the
fundamentals in gHs and*CgH¢ could not be achieved before

a Fermi resonance interaction with the overtone states of another
vibration was also included in the calculation. The result is a
very good fit of the calculated to the experimentally measured
v1, v2 fundamentals for all Dgn, benzene isotopic species. The
harmonic force constant values, determined from this fit, show
significant deviation from the previously obtained highly
accurate force field of Goodman et &lthe diagonal force
constants are increased by about 0B4(= 7.645 and~,, =
5.610), whereas the nondiagonal force constant is dramatically
reduced by 0.127H; » = 0.030). Such large corrections to the
harmonic force constants should be expected to be of crucial
importance for the reliable knowledge of the force field in a
molecule like benzene, taking into account an overall conclusion

diagonal anharmonic constant contributions to the anharmonicby Goodman et d.that “for prediction of frequencies to the

corrections. Thev1 values in both works are however in better

1-2 cm ! vibrational resolution level required by spectrosco-

accord. On the other hand, the presently determined values ofpists to secure band assignments, it is necessary to have a force

w2 (CGHG) = 3213 cnt! and w2 (CeDe) = 2387 cnm! for
benzene and deuteriobenzene are rather close to the valyes
(CsDe) = 3208 cnm! andwest(CsDe) = 2381 cnm?, respectively,
estimated in ref 22 in the following manner: the anharmonic
correction A, calculated using ab initio anharmonic force

field in which the force constants are known, in general, to 0.01
mdyn/A”.

In forthcoming work, the studies on the precise determination
of ground electronic state benzene harmonic force constants for
vibrational modes of the other symmetries besidgswill be

constants was summed with the experimentally observed carried on. For this purpose, the algorithm for description of

fundamentab..
Results on the energl;, of eigenstates, corresponding to
purely local C-H stretch stategilin benzene, calculated using

symmetrized local bond (of both local and nonlocal type)HC
stretch eigenfunctions of all possible symmetry typkg, (Ao,
Biu, B2y, E2g, and Eyy) will be developed in due detail, com-

the set of force constants determined above, are summarized irplementing the previously employed formali$f#!which was
Table 5 (second column). As pointed out above, the energy restricted only to the purely local-€H stertching states. The

levels E;, are satisfactorily described by the valugs$ calcu-

non-C—H stretching vibrations (which are less strongly anhar-

lated using formula 15. It has been found that the best overlap monic) will be treated as nonlocal symmetrized mo8edJsing

is obtained at following values of the parameters involved in
f-la 15: wgy = 3137.5 andk,, = 58.5 (in cn1l). The results
from the calculations using f-la 15[) are displayed in the

this combined LM+ SM approach, it will be our aim to obtain
high precision values for all of the harmonic and the key
anharmonic benzene force constants. We hope that using these

third column of Table 5. As already discussed, the anharmonic values for the force constants and employing our nonperturbative

correction x;,; for the observed energy levels, practically
coincides with the valugcy, characterizing the input local bond
Morse oscillator. It is interesting to note, however, that the
obtained value ofsi.,, = 3137.5 cmt is very far from both the
local bond Morse oscillator harmonic frequenaysy = 3191.8
cm?, as well as the NMQ, harmonic frequencyp, = 3213

cm~1, and cannot therefore be used, if experimentally observed,

to make any conclusions about their magnitude.

V. Conclusion

The present work deals with the accurate determination of

some harmonic and anharmonic force constants in benzene from

the experimentally observed fundamental vibrational frequen-

algorithm could allow the detailed investigation of the benzene
vibrational structure and IVR in the range of the first-8
stretching overtone (at 6000 cA), where the conventional
spectral analysis, based on perturbation theory does not yield
satisfactory result€ because of the plethora of resonances, but
where very detailed experimental data have been obtained
lately 34-36
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