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In this work, the problem for the quality of empirically determined harmonic force constants in ground electronic
state benzene has been carefully reexamined, for the case when strongly anharmonic vibrations are involved
and in particular for the A1g (ν1 andν2) vibrational system. A numerical procedure, based on a local bond
Hamiltonian representation for the C-H stretch system and a symmetrized coordinate treatment for the
ν1(C-C) mode, has been described and applied to the determination of the harmonicF1,1, F2,2, andF1,2, and
some important (diagonal) anharmonic force constants, instead of the traditionalFG analysis. As a reference
data for the determination of the required force constants, the set of experimentally observedν1 and ν2

fundamentals for fourD6h benzene species C6H6, C6D6, 13C6H6, and13C6D6 have been employed. The harmonic
force constants as well as harmonic frequencies obtained in this work have substantial deviations from previous
determinations. Using the presently determined force constant values, a very good fit of the calculated to the
experimentally observed frequencies has been achieved.

I. Introduction

The ground electronic state potential surface of benzene has
long been established as a benchmark for empirical potential
surface methods.1-8 A great body of spectroscopic data is
available for benzene as well as for the isotopically labeled
species,9-18 which has allowed us to derive a highly accurate
empirical harmonic force field.6-8 Although the empirically
generated complete harmonic force field by Goodman and co-
workers6-8 is capable of reproducing very well practically all
spectroscopic observables for benzene C6H6, still some discrep-
ancies remain, concerning in particular the C-H stretch
fundamentals and some frequencies of the same symmetry as
the C-H stretches [e.g., modes no. 6, 7, 8, and 9 (ofE2g

symmetry) and modes no. 12 and 13 (ofB1u symmetry), in
Wilson’s numbering, cf. Table 5 from ref 8]. Furthermore, still
larger discrepancies occur in the vibrational frequencies of the
isotopically labeledD6h benzenes (C6D6, 13C6H6, and13C6D6).

Ab initio methods have been widely applied to the determi-
nation of the harmonic and higher order force constants in
benzene.19-22 At the present state of the art, these methods are
not suitable for determination of the harmonic force constants
with spectroscopic accuracy; however, it was argued by Maslen
et al.22 that ab initio methods should be much more efficient
for anharmonic force constants.

The benzene potential field can be described as a series
expansion in a variety of coordinate types. Using symmetrized
curvilinear (Whiffen’s) coordinatesSk,4 it takes the form

Here, Fi,k are harmonic force constants,Fi,k,j are anharmonic
cubic force constants, etc. The advantage of working in terms
of symmetrized curvilinear coordinates is that the force constants

Fi,k, Fi,k,j, ... are identical for all isotopic species, which sustain
the symmetry of benzene (e.g., C6H6, C6D6, 13C6H6, and13C6H6).

The harmonic force constantsFi,k are the most important ones
in expansion 1, because (i) they are the largest and determining
ones and (ii) their values stay unchanged, when rectilinear
symmetrized coordinates are used instead of curvilinear ones.23

In general, the empirical determination of harmonic force
constantsFi,k is carried out for each symmetry block of
vibrations separately, using as a reference data the relevant
harmonic normal mode (NM) frequencies (of one or more
isotopic species)ωi, by means of the standard Wilson’sFG
analysis.1 For example, for theA1g block in benzene, consisting
of the symmetrized vibrationsS1 (a C-C stretch) andS2 (a C-H
stretch), the three relevant harmonic force constantsF1,1, F2,2,
and F1,2 can be determined, if known are the harmonic NM
frequenciesω1 andω2 for C6H6 plus one ofω1 andω2 for C6H6.8

The most serious problem with this approach is that the
harmonic frequenciesω1 andω2 are not experimentally observ-
able, but the corresponding fundamental frequenciesν1 andν2

are. Therefore, for the determination of harmonic force constants
Fi,k, fundamental frequenciesνi have usually been employed,
instead of harmonic NM frequenciesωi, assumingνi and ωi

are reasonably close. There are however certain strongly
anharmonic vibrations (e.g., the C-H stretches) for which the
anharmonic corrections∆i ) ωi - νi are quite large. In such
cases, theFG analysis could yield incorrect values forFi,k, if
determined usingνi instead ofωi. In second-order perturbation
theory (disregarding resonance effects), the anharmonic cor-
rections∆i are given by the expression

wherexii, xik, and gii are anharmonic constants anddi is the
degeneracy. In principle, the anharmonic constants can be
expressed through the cubic and quartic force constantsFi,k,j

andFi,k,j,l, as well as terms containing G-matrix derivatives.
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Goodman et al.8 have taken into account only the diagonal
anharmonic constantxii (derived from higher C-H stretch
overtone absorption spectra24) in calculating the anharmonic
corrections∆i to C-H stretch fundamentals in benzene; thus,
they took∆2 ) 2x22 ) 117 cm-1, and henceω2 ) ν2 + ∆2 )
3191 cm-1. However, there are indications, that∆2 might be
obtained significantly larger when nondiagonal anharmonic
constants are also taken into account. Thus, Maslen et al.22 have
obtained from ab initio calculations∆2 ) 138 cm-1, which leads
to a very different value forω2.

On the other hand, it is a generally accepted idea, that the
system of C-H stretch vibrations in benzene is much more
conveniently and reliably described as a set of six identical,
one-dimensional, strongly anharmonic, very weakly coupled to
each other, local bond Morse oscillator Hamiltonians (in local
coordinatessi, i ) 1, ..., 6), instead of symmetrized (S2, S13, S7,
and S20) and NM oscillators.24-29 In this local mode (LM)
description, the basis C-H stretch vibrational functions are
obtained as appropriately symmetrized linear combinations of
products of six Morse oscillator eigenfunctions, belonging to
one of the following symmetry types:A1g, A2g, B1u, B2u, E2g,
or E1u. The C-H stretch basis functions of a given symmetry
type will be coupled to the block of symmetrized non-C-H-
stretch vibrations of the same symmetry type, to yield the
experimentally observable vibrational frequencies. In particular,
the C-H stretch basis functions ofA1g symmetry will be
strongly coupled (through nondiagonal harmonic interaction
terms) to the eigenstates of the totally symmetric C-C stretch
oscillatorS1. The investigation of this coupling between a local
mode and a symmetrized mode cannot be done analytically (as
is the familiarFG analysis in the case of only symmetrized
modes), but it must be done by numerical diagonalization of
an appropriately selected Hamiltonian matrix. In general, the
described approach can be classified as combined LM+ SM
(symmetrized mode) treatment.28-31 Such an approach is par-
ticularly suitable for exploration of higher excited C-H stretch
overtone states, their absorption spectra, and dynamics.28-31

It is our aim to demonstrate that this approach is very useful
for the lower excited vibrational states as well. In the present
work, we are studying theA1g (ν1 andν2) vibrational system in
benzene. This work is organized as follows. In section II is
outlined the theoretical LM description of the C-H stretch
Hamiltonian in benzene and its symmetry adapted eigenfunc-
tions, in particular local and nonlocal basis states ofA1g

symmetry type. The transformation of the C-H stretch Hamil-
tonian from LM (si) to SM (Si) coordinates is considered, and
the correspondence of harmonic and anharmonic force constants
in both types of representations is discussed. In section III the
harmonic interaction Hamiltonian, couplingA1g C-H stretch
basis states to eigenstates of theS1 mode, is considered. Next,
a search procedure is outlined, for selection of an active space
and derivation of the relevant Hamiltonian matrix, whose
diagonalization is subsequently carried out using a Lanczos
tridiagonalization routine. In section IV are presented and
discussed the results from the numerical calculations, yielding
the A1g (ν1 and ν2) fundamentals of the fourD6h benzene
isotopomers C6H6, C6D6, 13C6H6, and 13C6D6. By adjustment
of the calculatedν1 andν2 fundamentals to the experimentally
measured frequencies (summarized in Table 1), values for the
most important harmonic and anharmonic force constants,
relevant to the C-H stretch vibrational system as well as to
the S1(A1g) vibration in benzene, have been determined. It is
shown, that for the correct description of theν2 fundamentals
(at ∼3000 cm-1), resonant anharmonic interactions with other

benzene vibrations must also be taken into account. In section
V we conclude.

II. LM Description of the C -H Stretch Vibrational
System in Benzene

The Hamiltonian of the C-H stretch vibrational system in
benzene is written in the form

whereH0
CH is the zeroth order Hamiltonian, consisting of six

uncoupled Morse oscillators,gss ) 1/mH + 1/mC (mH andmC

are the mass of H and C atoms, respectively),as is the
anharmonic parameter,Ds is the dissociation energy,H1

CH is
the interaction Hamiltonian, andf1,2, f1,3, andf1,4 are small force
constants, describing the coupling between different C-H bond
oscillators. The Morse potential is expanded in powers ofs:

where fss, fsss, etc. are diagonal harmonic, cubic, etc. force
constants. The energy levels of a Morse oscillator are given by
the formula

whereωCH is the harmonic frequency andxCH is the anharmonic
constant:

The C-H stretch HamiltonianHCH can also be presented in
terms of symmetrized coordinates instead of the local bond
stretchessi. We shall be using the complex symmetrized
coordinatesqi

30 instead of Whiffen’s coordinatesSi,4 because
in terms ofqi the potential field expansion to arbitrary powers
of the coordinates contains only totally symmetric terms and
the minimum number of independent force constants (for the
C-H stretch coordinates, the relations areq2 ) S2, q13 ) iS13,
q7a,b) 1/ x2(S7a ( iS7b), andq20a,b) 1/x2(S20a ( iS20b). Only
those terms in the expansion of the C-H stretch potential field
to fourth order are given, which contain theA1g coordinateq2:

TABLE 1: Experimentally Observed Fundamental
FrequenciesA1g (ν1 and ν2) for D6h Symmetry Benzenes (in
cm-1),8,15,16Employed as a Reference Data for Empirical
Determination of the Force Constants

C6H6 C6D6
13C6H6

13C6D6

ν1 993.071 945.583 957.4 916.6
ν2 3073.942 2303.44 3049.8 2283.9

HCH ) H0
CH + H1

CH,

H0
CH ) ∑

i)1

6 [-
p2

2
gss

∂
2

∂si
2

+ Ds(1 - e-assi)2]
H1

CH ) f1,2(s1s2 + s2s3 + ... + s6s1) + f1,3(s1s3 + s2s4 + ... +
s6s2) + f1,4(s1s4 + s2s5 + s3s6) (3)

Ds(1 - e-ass)2 ) Ds[(ass)
2 - (ass)

3 + 7
12

(ass)
4 - ...] )

1
2
fsss

2 + 1
6
fssss

3 + 1
24

fsssss
4 + ... (4)

En ) ωCH(n + 1
2) - xCH(n + 1

2)2
(5)

ωCH ) 1
2πxfssgss, xCH ) 1

2
ωCH(asks)

2, ks ) xpxgss/fss

(6)

fss)
ωCH

ks
2

, fsss) -
3fss

ks x2xCH

ωCH
) - 3

ks
3x2ωCHxCH (7)
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Hence, the relevant symmetrized force constants are:F2,2 ) fss

+ 2f1,2 + 2f1,3 + f1,4, F2,2,2 ) fsss/x6, F2,7,7 ) F2,20,20) fsss/x6,
F2,2,2,2 ) fssss/x6, F2,13,7,20) -fssss/x6, etc. From this expan-
sion in symmetrized coordinates, it is obvious that, although
the small quadratic nondiagonal coupling terms have disap-
peared, nondiagonal cubic, quartic, etc. force constants arise,
which are as large as the relevant diagonal anharmonic constants
F2,2,2, F2,2,2,2, .... These latter constants are however much smaller
than the diagonal force constants for a local bond oscillator,
fsss, fssss, etc. (This observation holds for the other symmetrized
C-H stretchesq13, q7a,b, and q20a,b as well). Hence, the
symmetrized C-H stretch modes are more weakly diagonally
anharmonic but strongly anharmonically coupled to each other,
whereas the local bond oscillators are more strongly diagonally
anharmonic, however, practically uncoupled to each other. This
is why the C-H stretch vibrations in benzene are more
satisfactorily described as local bond oscillators than as sym-
metrized (and normal) modes.

The eigenfunctions ofH0
CH are products of six Morse

oscillator eigenfunctions|ni〉: ∏i)1
6 |ni〉i, with their energy

being given by

For example,|2〉1|1〉3 is an eigenstate which has two excitation
quanta in bond oscillator number 1 and one quantum in oscillator
number 3, whereas oscillators 2, 4, 5, and 6 have zero excitation
quanta and have (for compactness) been excluded from the
notation. A state|n〉i is of purely local type, because only one
bond oscillator is excited, whereas a state with more than one
oscillator excited is of nonlocal character, the stronger, the more
evenly are the excitations distributed among the six bond
oscillators. A state is said to belong to then ) ∑i)1

6 ni overtone
system. To obtain the symmetry adapted eigenstates ofH0

CH,
appropriate linear combinations of the product statesæ ) ∑k)0

5

Ck ∏i)1
6 |ni〉i+k must be taken,25-27 which can have one of the

following symmetry types:A1g, A2g, B1u, B2u, E2g, or E1u. It is
not an easy task to generate the symmetrized eigenstates of all
symmetry types for arbitrary overtone manifoldsn. So far, we
have been able to design an algorithm generating the states of
A1g symmetry only, which are required for investigation of the
A1g (ν1 andν2) vibrational system in benzene. Some of the lower
excitedA1g eigenstates of local and nonlocal character are as
follows. Overtone manifoldn ) 0 consists of oneA1g stateæ(0)

) ∑i)0
6 |0〉i, at energyE0 ) 3(ωCH - xCH/2). Overtone manifold

n ) 1 contains six states, one of them is ofA1g symmetry,æ(1)

) 1/x6(|1〉1 + |1〉2 + ... + |1〉6), at energyE1 ) 4(ωCH -
7xCH)/2. Overtone manifoldn ) 2 contains 21 states, four of
them are ofA1g symmetry: one purely local state,æ0

(2) )

1/x6(|2〉1 + |2〉2 + ... + |2〉6) at energyE2 ) 5(ωCH - 3xCH/2)
and three nonlocal states at energyE1+1 ) 5ωCH - 13xCH/2:
æ1

(2) ) 1/x6(|1〉1|1〉2 + |1〉2|1〉3 + ... + |1〉6|1〉1), æ2
(2) )

1/x6(|1〉1|1〉3 + |1〉2|1〉4 + ... + |1〉6|1〉2), and æ3
(2) )

1/x3(|1〉1|1〉4 + |1〉2|1〉5 + |1〉3|1〉6), etc.
Both the local and nonlocalA1g eigenstates of the C-H stretch

system, described above, are coupled strongly (harmonically)
to the eigenstates of theA1g C-C stretch vibrationS1 in benzene.
This vibration is described by a Morse oscillator Hamiltonian
in terms of the symmetry coordinateS1:

where

energy of overtone levels in theS1 vibration, whose harmonic
frequencyω1

s and anharmonic constantx1 are expressed through
the force constantsF1,1 andF1,1,1 (using formulas analogous to
6 and 7).S1 is however much more weakly anharmonic (x1/ω1

s

≈ 0.001) than the local bond C-H oscillator (xCH/ωCH ≈ 0.015).
The basis states for the description of the considered

vibrational systemA1g (ν1 andν2), consisting of theA1g C-H
stretch eigenstatesæi

(n) and the eigenstates|m〉 of the S1

Hamiltonian (eq 10), are obtained as products:ψ ) æi
(n)|m〉 )

|æi
(n),m〉. The energy of such a basis state is given by

III. Interaction Hamiltonian and Hamiltonian Matrix
Manipulation

The eigenstates|æi
(n),m〉 are coupled to each other through a

quadratic interaction Hamiltonian:

whereF1,2 is a nondiagonal harmonic force constant andG1,2

) - 1/mc is a kinetic coupling constant. In calculating the matrix
elements〈æk

(l), r|H1,2|æi
(n),m〉, the integrals insk are calculated

using Morse oscillator formalism:

V ) q2
2(12 fss+ f1,2 + f1,3 + 1

2
f1,4) + q2

3
fsss

6x6
+

q2q20a q20b

fsss

x6
+ q2q13

2
fsss

2x6
+ q2q7aq7b

fsss

x6
+ q2

4
fssss

144
-

q2(q7aq20a
2 + q7bq20b

2)
fssss

12
+ q2

2q20aq20b

fssss

12
+

q2
2q7aq7b

fssss

12
- q2q13(q7aq20b + q7bq20a)

fssss

6
-

q2(q7a
3 + q7b

3)
fssss

36
+ q2

2q13
2
fssss

24
+ ... (8)

E ) ∑
i)1

6 [ωCH(ni +
1

2) - xCH(ni +
1

2)2] (9)

HCC ) p2

2
gCC

∂
2

∂S1
2

+ DC(1 - e-acs1)2,

DC(1 - e-acs1)2 ) 1
2
F1,1S1

2 + 1
6
F1,1,1S1

3 + ... (10)

gCC ) 1/mc; Em ) ω1
s(m + 1

2) - x1(m + 1
2)2

(11)

Eψ ) ∑
i)1

6 [ωCH(ni +
1

2) - xCH(ni +
1

2)2] + ω1
s(m+

1

2) -

x1(m+
1

2)2

(12)

H1,2 ) - p2G1,2

∂
2

∂S1 ∂S2

+ F1,2S1S2 )

- p2G1,2

1

x6

∂

∂S1
∑
k)1

6 ∂

∂sk

+ F1,2S1

1

x6
∑
k)1

6

sk (13)

k〈n+1| ∂

∂s′k |n〉
k

) xn+1
2 x(R - 2n - 2)2 - 1

R(R - n - 1)
) -

k〈n| ∂

∂s′k |n+1〉
k

(14)

k〈n+1|s′k|n〉k ) R
R + 2n - 2 k〈n+1| ∂

∂s′k |n〉
k

) k〈n|s′k|n+1〉k
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wheres′k ) kssk is a dimensionless coordinate andR ) ωCH/
xCH, whereas the integrals inS1 are the simpler harmonic
oscillator expressions (obtained from (14) atR f ∞).

Besides H1,2, there is also a second (weak) interaction
Hamiltonian H1

CH (eq 3), which is responsible for couplings
only among the eigenstates of the C-H stretch system. The
magnitude of these coupling terms is determined by the small
force constantsf1,2, f1,3, andf1,4.

Thus, the C-H stretch system is characterized by force
constantsfss, fsss, f1,2, f1,3, andf1,4, theS1 vibration is characterized
by F1,1 andF1,1,1, and the coupling between both is characterized
by F1,2. For a calculation on the eigenstates of the resultingA1g

(ν1 andν2) vibrational system to be performed, values must be
ascribed to each of these eight force constant parameters. The
following G-matrix elements are also required for the calcula-
tion, whose values vary according to the isotopomer consid-
ered: gss ) 1/mH + 1/mC, gCC ) 1/mC, andg1,2 ) - 1/mC.

Having defined the basis states and coupling matrix elements,
a search procedure has been designed for selecting an active
space (AS) from the infinite manifold of available basis states
and setting up of the Hamiltonian matrix. Starting with an
appropriately chosen initial basis state|æi

(n),m〉, the algorithm
proceeds to select all basis states coupled to this state through
matrix elements of the interaction Hamiltonian (Hint ) H1,2 +
H1

CH); next, each of these initially selected states is explored,
and more basis states are selected, which are coupled to it by
Hint; this procedure is carried on until a sufficiently large
and representative AS of dimensionalityN has been selected.
Simultaneously, the Hamiltonian matrixHn,k is obtained,
which consists of the basis state energiesEψ (eq 12) as dia-
gonal elements and the relevant coupling matrix elements
〈æk

(l),r|Hint|æi
(n),m〉 as nondiagonal elements. The dimensional-

ity N of the selected AS can be varied, by varying the values of
several parameters of the search, as described previously.30,31

(A typical value sufficient for obtaining convergence in our
calculations wasN ≈ 300.) To obtain the eigenvalues of the
studied vibrational system, the selected Hamiltonian matrix was
diagonalized numerically, using a Lanczos tridiagonalization
procedure.32,33 These eigenvalues can then be compared to
experimentally observable fundamental frequencies and overtone
and combination level energies.

IV. Results and Discussion

The set of experimentally measuredν1 andν2 fundamentals
for all four D6h benzene species C6H6, C6D6, 13C6H6, and
13C6D6,8,15,16which have been employed as a reference data in
the calculations, are summarized in Table 1. A correspondence
can easily be established between the eigenstates obtained as a
result of the diagonalization and the basis states, described
above. In the first place, it was found that the energyE′n of
eigenstates, corresponding to purely local C-H stretch states
|n〉i, could be fairly well described by the energyE′n, calculated
according to the formula

for suitable values of the parametersω′CH and x′CH. It is
noteworthy that the derived value ofω′CH was very different
from the input harmonic frequencyωCH (eqs 5 and 6; to be
discussed later) but the anharmonic constantx′CH was practi-
cally identical to the input anharmonic constant, i.e.,x′CH ≈
xCH. Because it is expected that the same anharmonic constant
value x′CH should hold for the C-H stretch overtones ofE1u

symmetry (IR active) which have been measured experimen-

tally,24 we have fixed the input anharmonic constant atxCH )
x′CH ) 58.6 (in accord with Goodman et al.8). From this value
for xCH and the input value for the harmonic force constantfss,
the value offssswas determined, using formulas 6 and 7.

The progression in theν1 mode, corresponding to purelyS1

vibrational overtone states|m〉, is very clearly discernible in
the calculated eigenvalue spectrum, with anharmonic constant
x′1 ≈ x1. This anharmonic constant is however very well-
known from experimentally observed long progressions in the
ν1 mode in benzene, asx′1 ) 0.65.18 Thus, analogously to the
above, the value forF1,1,1 could be determined fromx1 ) x′1 )
0.65 and the inputF1,1 value. In this way, the number of
independently variable input force constant parameters could
be reduced by two:fsssandF1,1,1.

The ν1 fundamentals (at about 1000 cm-1) are sufficiently
low in energy and therefore not likely to be perturbed by
resonances with other vibrational levels, whereas in the case of
theν2 fundamentals (at∼3000 cm-1), Fermi resonance interac-
tions with combinations or overtones of vibrations, external to
the consideredA1g (ν1 andν2) system, might incur a considerable
shift in their original position. Therefore, it was our first aim in
the calculations to reproduce correctly the experimentally
measured fundamental frequenciesν1 for all four isotopomers
(summarized in Table 1) by adjusting the values for the
remaining freely variable six force constants:fss, f1,2, f1,3, f1,4,
F1,1, andF1,2. For this reason, the effect of small variations in
the input values of each one of the parametersfss, f1,2, f1,3, f1,4,
F1,1, andF1,2 on the four pairs of calculated (ν1 andν2) values
had to be examined. As a rule, each parameter was found to
have a specific effect on each one of the eightν1 andν2 values,
different from that of the other parameters; furthermore, theν1

andν2 frequencies for the pair of species C6H6 and13C6H6 were
affected in an almost identical manner, different from that for
the other pair C6D6 and 13C6D6. For example, an increase of
F1,2 by 0.01 produced an increase ofν1 by 0.14 and a decrease
of ν2 by 0.46, for C6H6 and 13C6H6, and an increase ofν1 by
0.28 and a decrease ofν2 by 0.67, for C6D6 and 13C6D6, etc.
Variations in the three small force constantsf1,2, f1,3, and f1,4,
however, did not have independent significance; they could be
varied with respect to each other, without changing the resultant
ν1 and ν2 values, as long as the magnitude of the linear
combination 2(f1,2 + f1,3) + f1,4 was preserved. In this way, the
number of independently variable parameters could be reduced
by two more. By suitable adjustment of the parametersfss, F1,1,
F1,2, and 2(f1,2 + f1,3) + f1,4, it has been possible to achieve an
almost perfect fit of the calculated to the experimentally
measuredν1 fundamentals for all fourD6h benzene species
C6H6, C6D6, 13C6H6, 13C6D6. The set of calculatedν1 and ν2

values are displayed in Table 2. This fit was obtained with
following values of the force constant parameters (in mdyn and
A): fss ) 5.580,F1,1 ) 7.645,F1,2 ) 0.030, fsss ) -30.070,
F1,1,1) -16.758,f1,2 ) 0.012,f1,3 ) 0.004,f1,4 ) -0.002, [2(f1,2

+ f1,2) + f1,4 ) 0.030]. We note that this set of force constant
values is unique, i.e., neither of them can be varied substantially
without deteriorating the obtained best fit to the fourν1

frequencies. The discussion of the obtained force constant values
will be deferred until a little later.

E′′n ) (ω′CH - x′CH)n - x′CHn2 (15)

TABLE 2: Calculated A1g Fundamental Frequenciesν1 and
ν2 (in cm-1) for D6h Symmetry Benzenesa

C6H6 C6D6
13C6H6

13C6D6

ν1 993.087 945.476 957.55 915.48
ν2 3050.346 2304.79 3039.41 2286.69

a Fermi resonance interactions of the 21 state with 192 and 32 are
not taken into account.
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From Table 2, it is seen that, although all fourν1 fundamentals
are satisfactorily reproduced, theν2 values are quite far from
their experimentally measured positions, in particular for the
two H-isotopomers C6H6 and13C6H6. Hence, it is expected that
theν2 fundamentals for the H isotopomers are affected by strong
Fermi resonance with overtone states of other benzene vibra-
tions, outside theA1g (ν1 and ν2) system. Obviously, these
vibrations will also have to be taken into account in order to
obtain realistic results for the fourν2 fundamentals.

In this connection, we note that, in terms of curvilinear
(symmetrized) coordinates, cubic kinetic interactions (first
derivatives of G-matrix elements) are expected to prevail over
cubic potential terms. On the other hand, G-matrix derivatives
can be calculated exactly, whereas anharmonic force constants
are practically unknown. Therefore, in the following estimations,
only kinetic interaction terms have been taken into account,
completely disregarding potential couplings. Calculations on
G-matrix derivatives in benzene (which have been described
in considerable detail previously30) show that the C-H stretch
fundamentalν2 is coupled most strongly kinetically (by terms
∼1/mH) to the overtone states k2 (at energy 2ωk

s) of the
symmetrized vibrationsS3, S9, S15, andS18 (of C-H in-plane
wagging type). (The frequencyωk

s of a symmetrized vibration
SK, can be calculated by means of f-la 6, using the values of
Gk,k

1 and Fk,k.8) Of them. only S3(A2g) and S18(E1u) have
frequencies (ω3

s ) 1347 cm-1 and ω18
s ) 1388 cm-1) whose

first overtones are reasonably close toν2. Considering first the
S18 case, the leading cubic kinetic interaction term, coupling 21

(ν2) to 182 (2ω18
s ), is obtained as

wheres0 is the equilibrium C-H bond length. However,S18 is
coupled strongly (through harmonic kinetic and potential terms)
to two otherE1u modes: theS19 vibration (ω19

s ) 1244 cm-1)
and S20 (ω20

s ∼ 3000 cm-1), the latter one belonging to the
C-H stretch system.1 In fact, S18 and S19 are coupled more
strongly to each other and less strongly toS20, because the
frequenciesω18

s and ω19
s are rather close to each other but

much smaller thanω20
s . To take into account the coupling

betweenS18 andS19, which leads to substantial frequency shifts,
partial normalization of the vibrationsS18 and S19 has been
carried out, using conventionalFG analysis (and the relevant
values ofG18,19

1 and f18,19 ) 0.209 8). In this way, the NM
frequenciesω18 ) 1052 cm-1 and ω19 ) 1500 cm-1 (for
benzene C6H6) were obtained, as well as the relevant (curvi-
linear) NM coordinates:Q18 ) a18,18S18 + a18,19S19 andQ19 )
a19,18S18 + a19,19S19. It is seen that these partially normalized
frequencies are reasonably close to the experimentally measured
NM frequencies.8,10,11However, an inconsistency in the choice
of theS18 andS19 symmetrized coordinates by Whiffen4 seems
to have occurred. Indeed, theS18 vibration (of C-H wagging

character) has higher frequencyω18
s than the frequencyω19

s of
theS19 (C-C stretching) vibration. Upon normalization, theS18

vibration is transformed into the NMQ19 (of prevailing C-H
wagging character), whose frequencyω19 is higher thanω18

(NM Q18, predominantly C-C stretching). Therefore, it would
be more suitable to interchange Whiffen’s notation of the
symmetrized coordinatesS18 andS19. Now, the first overtone
192 of the NM Q19 (2ω19 ) 3000 cm-1) is seen to be quite
close toν2. The kinetic term coupling the states 21 and 192,
attains the form

Analysis of the relative positions of the 21 and 192 states and
the magnitude of the matrix element〈21|T2/19,19|192〉 in all four
isotopic species shows that, in both C6H6 and13C6H6, the 192

state is located energetically very close below 21 and strongly
coupled to it as∼1/mH, whereas in C6D6 and 13C6D6, it was
located far above 21 and coupled less strongly, as∼1/mD (mD

is mass of the deuterium atom). Hence, the state 192 is expected
to shift the ν2 fundamental in C6H6 and 13C6H6 to higher
frequencies and practically leave unchanged the C6D6 and
13C6D6 isotopomers, which is the required behavior (cf. the data
for ν2 in Tables 1 and 2). The (kinetic) coupling of the 32 state
(at energy 2ω3

s) to ν2 was also taken into account by means of
a procedure, analogous to the above-described; this case is even
simpler becauseS3 is the only vibration ofA2g symmetry in
benzene.

Calculations were performed on all four benzene isotopomers
with the states 32 and 192 and their coupling matrix elements
to ν2, included in the Hamiltonian matrix. The results from the
calculation of the entire set of fundamentalsν1 andν2 for the
four D6h benzene species C6H6, C6D6, 13C6H6, 13C6D6 are
displayed in Table 3. From a comparison of the values of Tables
3 and 1, it is seen that the agreement between calculatedν1 and
ν2 values with experimentally measured fundamentals for all
four D6h benzene isotopomers is particularly good, in fact much
better than previously achieved.8 The fit is obtained at the
following values of the harmonic and anharmonic force
constants (in mdyn and A):fss ) 5.580,F1,1 ) 7.645,F1,2 )
0.030, fsss ) -30.070,F1,1,1 ) -16.758,f1,2 ) 0.012, f1,3 )
0.004,f1,4 ) -0.002,F2,2 ) fss + 2(f1,2 + f1,3) + f1,4 ) 5.610.
It is noteworthy, that the determined harmonic force constant
values show considerable deviations from the previous highest
precision empirical determinations.8 Indeed, the diagonal force
constants fss, F1,1, and F2,2 determined in this work are
substantially larger than the best estimates, obtained usingFG
analysis (fss ) 5.547,F1,1 ) 7.616, andF2,2 ) 5.554; ref 8).
Most interesting is, however, the behavior of the nondiagonal
force constant (F1,2 ) 0.157; ref 8), which is reduced to a very
small valueF1,2 ) 0.030, according to the present determination.
It is noteworthy that this small value forF1,2 is in line with
Whiffen’s constraint of all C-H stretching and other-vibration
potential interactions to zero.4 Hence, the interaction of theA1g

C-H stretching vibrational system with theS1(C-C) mode
seems to be almost entirely kinetic, through theG1,2 term (eq
13). The values of diagonal anharmonic cubic force constants
fsss ) -30.070 andF1,1,1 ) -16.758 obtained here are about
10% smaller than the ab initio determined values by Maslen et
al.22 of -34.289 and-18.289, respectively.

From the determined harmonic force constant values, har-
monic frequencies can readily be calculated for all four
isotopomers: the local bond Morse oscillator frequencyωCH is

TABLE 3: Calculated A1g Fundamental Frequenciesν1 and
ν2 (in cm-1) for D6h Symmetry Benzenes, Taking into
Account Fermi Resonance Interactions of theν2
Fundamental and Corresponding to the Best Fit Values for
the Force Constant Parameters (in mdyn and A): fss )
5.580,F1,1 ) 7.645,F1,2 ) 0.030,fsss ) -30.070,F1,1,1 )
-16.758,f1,2 ) 0.012,f1,3 ) 0.004,f1,4 ) -0.002, [2(f1,2 + f1,3)
+ f1,4 ) 0.030]

C6H6 C6D6
13C6H6

13C6D6

ν1 993.078 945.47 957.55 915.47
ν2 3073.96 2305.13 3052.08 2286.91

T2/18,18) - 4p2

s0 ( 1
mH

+ 1
mC)S2 ( ∂

2

∂S18a
2

+ ∂
2

∂S18b
2)

T2/19,19) - 4p2

s0 ( 1
mH

+ 1
mC) (a19,18)

2S2 ( ∂
2

∂Q19a
2

+ ∂
2

∂Q19b
2)
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obtained using thefss and gss values and f-la 6 and the NM
frequenciesω1 andω2 are obtained by means ofFG analysis,
using the quantitiesF1,1, F2,2, F1,2, G1,1, G2,2 andG1,2. The values
obtained for the harmonic frequencies of all four molecules are
displayed in Table 4.

From Table 4, it is seen that theω2 values determined in this
work considerably exceed those derived by Goodman et al.8

This is easily understood, because Goodman et al.8 used only
diagonal anharmonic constant contributions to the anharmonic
corrections. Theω1 values in both works are however in better
accord. On the other hand, the presently determined values of
ω2 (C6H6) ) 3213 cm-1 and ω2 (C6D6) ) 2387 cm-1 for
benzene and deuteriobenzene are rather close to the valuesωest

(C6D6) ) 3208 cm-1 andωest(C6D6) ) 2381 cm-1, respectively,
estimated in ref 22 in the following manner: the anharmonic
correction ∆2 calculated using ab initio anharmonic force
constants was summed with the experimentally observed
fundamentalν2.

Results on the energyE′n of eigenstates, corresponding to
purely local C-H stretch states|n〉i in benzene, calculated using
the set of force constants determined above, are summarized in
Table 5 (second column). As pointed out above, the energy
levels E′n are satisfactorily described by the valuesE′′n calcu-
lated using formula 15. It has been found that the best overlap
is obtained at following values of the parameters involved in
f-la 15: ω′CH ) 3137.5 andx′CH ) 58.5 (in cm-1). The results
from the calculations using f-la 15 (E′′n) are displayed in the
third column of Table 5. As already discussed, the anharmonic
correction x′CH for the observed energy levels, practically
coincides with the valuexCH, characterizing the input local bond
Morse oscillator. It is interesting to note, however, that the
obtained value ofω′CH ) 3137.5 cm-1 is very far from both the
local bond Morse oscillator harmonic frequency,ωCH ) 3191.8
cm-1, as well as the NMQ2 harmonic frequency,ω2 ) 3213
cm-1, and cannot therefore be used, if experimentally observed,
to make any conclusions about their magnitude.

V. Conclusion

The present work deals with the accurate determination of
some harmonic and anharmonic force constants in benzene from
the experimentally observed fundamental vibrational frequen-

cies. The method of determination is not based on the traditional
(analytical)FG analysis in terms of symmetrized vibrational
coordinatesSK

1 (which is unreliable when strongly anharmonic
modes are involved) but on a LM Hamiltonian and symmetrized
eigenfunction representation (in terms of local bond coordinates
sK) of the C-H vibrational subsystem in benzene. This approach
is most suitable for treatment of the strong diagonal anharmo-
nizm of the C-H stretches, but requires numerical procedures
for its implementation. In the present work, theA1g (ν1 andν2)
vibrational system in benzene has been the object of investiga-
tion. The harmonic and some anharmonic force constants,
associated with this system, have been determined from a fit of
the calculated to the experimentally measured fundamentalsν1

andν2 of four D6h benzene isotopomers: C6H6, C6D6, 13C6H6,
and 13C6D6. Some additional experimentally obtained data on
the anharmonic characteristics of theν1 andν2 modes have also
been taken into account. In particular, a good fit for theν2

fundamentals in C6H6 and13C6H6 could not be achieved before
a Fermi resonance interaction with the overtone states of another
vibration was also included in the calculation. The result is a
very good fit of the calculated to the experimentally measured
ν1, ν2 fundamentals for all 4D6h benzene isotopic species. The
harmonic force constant values, determined from this fit, show
significant deviation from the previously obtained highly
accurate force field of Goodman et al.:8 the diagonal force
constants are increased by about 0.04 (F1,1 ) 7.645 andF2,2 )
5.610), whereas the nondiagonal force constant is dramatically
reduced by 0.127 (F1,2 ) 0.030). Such large corrections to the
harmonic force constants should be expected to be of crucial
importance for the reliable knowledge of the force field in a
molecule like benzene, taking into account an overall conclusion
by Goodman et al.8 that “for prediction of frequencies to the
1-2 cm-1 vibrational resolution level required by spectrosco-
pists to secure band assignments, it is necessary to have a force
field in which the force constants are known, in general, to 0.01
mdyn/A”.

In forthcoming work, the studies on the precise determination
of ground electronic state benzene harmonic force constants for
vibrational modes of the other symmetries besidesA1g will be
carried on. For this purpose, the algorithm for description of
symmetrized local bond (of both local and nonlocal type) C-H
stretch eigenfunctions of all possible symmetry types (A1g, A2g,
B1u, B2u, E2g, andE1u) will be developed in due detail, com-
plementing the previously employed formalism,30,31which was
restricted only to the purely local C-H stertching states. The
non-C-H stretching vibrations (which are less strongly anhar-
monic) will be treated as nonlocal symmetrized modesSK. Using
this combined LM+ SM approach, it will be our aim to obtain
high precision values for all of the harmonic and the key
anharmonic benzene force constants. We hope that using these
values for the force constants and employing our nonperturbative
algorithm could allow the detailed investigation of the benzene
vibrational structure and IVR in the range of the first C-H
stretching overtone (at 6000 cm-1), where the conventional
spectral analysis, based on perturbation theory does not yield
satisfactory results,22 because of the plethora of resonances, but
where very detailed experimental data have been obtained
lately.34-36
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